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Abstract. Kahler has used the correspondence between the exterior and Clifford algebras 
to formulate a version of the Dirac equation (the Kahler equation). We exploit the fact 
that exterior forms may thus be used for the description of half-integer as well as integer 
spin to present a sypersymmetric model. 

The Kahler equation offers an attractive description of half-integer spin in terms of 
a field which takes values in the exterior algebra of the cotangent space of the 
space-time manifold (Kahler 1962, Graf 1978, Benn and Tucker 1983a). We call 
such fields Kahler fields. Since differential forms are natural for the description of 
integer spin, Kahler’s equation offers a certain fusion between fermions and bosons. 
In a previous letter (Benn and Tucker 1983b) we formulated a supersymmetric model 
in terms of Kahler fields. We present full details in this paper. We use the conventions 
of Benn and Tucker (1983a, b, c, 1982). 

Kahler’s equation requires the use of inhomogeneous differential forms whereas 
familiar theories of bosons, for example the Maxwell or Klein-Gordon theories, 
require only homogeneous p-forms. It is therefore instructive to consider a theory 
of integer spin using inhomogeneous differential forms in a non-trivial way. Lich- 
nerowicz (1964) has shown how the Kemmer-Duffin-Petiau equations can be written 
using inhomogeneous differential forms. We first compare and contrast this equation 
with that of Kahler. The massive Kahler equation may be written 

d+ -64 = mJI (1) 

S = *d*. (2) 

d4, - 64- = m4 (3) 

where r/, is a Kahler field and 

We may write the Duffin-Kemmer-Petiau equation in a similar way, 

where 

4* = 1(1*7?)4. (4) 
The automorphism 77 commutes with Sp, which projects p-form components, and 
satisfies 

qS& = (-1)PSh. ( 5 )  
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It is readily checked that both (1) and (3) iterate to the Klein-Gordon equation, i.e. 

O $ = m 2 $  (6) 

o 4 = m 2 d  (7) 

where U is the Laplace-Beltrami operator, 

U= -(d8 +ad) .  (8) 
In this form the Kahler and Duffin-Kemmer-Petiau equations look very similar; to 
see the crucial difference between them we use the correspondence between the 
exterior and Clifford algebras (Kahler 1962, Graf 1978, Benn and Tucker 1983a) to 
rewrite them as 

respectively. The {e"}  are a basis for the cotangent space over space-time and {Xa} 
are a dual basis. V is the pseudo-Riemannian connection and denotes the Clifford 
product. Now in  Minkowski space we may find a complete set of covariantly constant 
minimal rank idempotent projectors {Pi}, i = 1, 2 , 3 , 4 .  Right multiplication of (9) by 
Pi then shows that the Kahler equation decouples into a minimal left ideal on which 
we may represent Spin (3, 1) .  The second term in equation (10) prevents the Duffin- 
Kemmer-Petiau equations from similarly decoupling into ideals. It is convenient to 
introduce 

d = d - S  (11) 

and to define $by 

d4 = $6. 

(SP4 = (- 1)[p'21s& (12) 

- 

6 = &# where the anti-automorphism 6 commutes with S, and satisfies 

lp/2] being the integer part of p/2. We may then of course write (1) as 

d$ = m4 
and (3) becomes 

(d -&4 = 2m4. (14) 
It is of interest to note that for m # 0 any solution to (14) is also a solution to (13). 
This is most readily seen by writing (14) as the pair of equations 

d#J = m 4  (d +4#J = 0. 

As a model for supersymmetry we take the action-density four-form 

A =  So($,BcC/,B+ 6,4(d+RI)d)z. (15) 
cC/ and #J are real Kahler fields, B is some (as yet unspecified) covariantly constant 
element of the algebra and z is the volume four-form *1. 

If, anticipating its semiclassical interpretation, we assign to the real components 
of elements of a further Grassman algebra, then we set E = +(-1) according to 
whether $ is taken to have an even (or odd) grading in this algebra. To prevent the 
action (15) from becoming an exact form we demand B = EB. 
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The field equations are readily obtained by noting that 

SO(Ly,BP ) z  = *tso(p"sa ) z  mod d (16) 

SO(5 "&P ) z  = *So(&&a 1 mod d (17) 
where + ( - )  is adopted according to whether the relative grading of a and P in the 
Grassman algebra is even (odd). With = EB, the field equations are the massless 
Kahler equation 

84=0 

d(8 +&4 = 0. 
and 

We may recognise 4 as containing generalised gauge fields by writing (19) as 

S d 4 - = O  (20) 

dS4, = 0. (21) 

4- + 4- + da, (22) 

4+ + 4+ + SP- (23) 

where a+@) is any even (odd) element of the algebra. The one-form component of 
4 obviously satisfies the Maxwell equation (for the vector potential). It may be seen 
that the three-form component is non-propagating by setting S3@ = *C, for some 
one-form C, and writing (20) as 

The following are now obviously symmetries: 

dSC = 0 
or 

(24) 

SC = constant. (25) 
The four-form component of 4 may be written as the Hodge dual of a O-form which 
satisfies the Klein-Gordon equation, whilst the two-form component is an 'anti- 
symmetric tensor gauge field' (Kemmer 1938, Deser and Witten 1981, Townsend 
1981). 

It has already been noted that B must satisfy B = EB.  If the action is to be diagonal 
in the minimal left ideals of JI which are projected with the idempotents {Pi }  then we 
further require 

Bpi = PiB Vi  = 1,2 ,  3 ,4 .  (26) 
The existence of such a B is guaranteed by the following theorem. (Actually this 
theorem could have been couched in much more general terms.) 

Theorem 1. If { P i }  are a complete set of pairwise orthogonal primitive idempotents 
of the Clifford algebra of an even-dimensional vector space then 3 B  : pi = B-'PiB Vi .  

Proof. It is trivial that pi has the same rank as Pi. The simplicity of the algebra ensures 
the existence of a set {Si}: pi =S;'PiSi (see e.g. Albert 1961). Let B = &Pisi; then 
X i  Pi = 1 = i ensures that 
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Orthogonality of the {Pi}  gives 

B-'Pi = S;'Pi and PiB = PiSi ; 

thus 
B-'P,B = B - ' P ~ P ~ B  = s ; ' p i p i s i  =s; 'pis i  = P i ,  

Theorem 2. If 3s : S F =  PS with s= * S  for some primitive idempotent P, then 
3 U : U 0  = QLI with = *U for any primitive idempotent Q. 

Proof. Simplicity of the algebra ensures that 3 T : Q = TPT-'.  SO 

SFO = SPF -1 --  O = T  PT 

sRj = PSF = T-'QTST TSFQ = QTSF 

i.e. if TSF U 
UQ = QU and 0 =*U i f s =  * S .  

Corollary. If 3 B : Bpi = PiB V i  with l? = B ( B  # 0 )  for some particular set of pairwise 
orthogonal primitive idempotents {Pi } ,  then if U 0  = QU for any primitive idempotent 
Q, = -U. For suppose we have U 0  = QU; then Qu = 00. If U +  0 E V then 

V o  = QV and Q =  v. 
By theorem 2 we may find a set of {Si}, with Sipj = Pisi and si = S i  Vi. We now set 
B = Ci Pisi ,  and have 

Bpi  = PiB V i  and B = B .  

B will only be zero when V = 0. 

Theorem 1 guarantees the existence of the B in  equation (26); to see that such a 
B must in fact satisfy B = -B, irrespective of the choice of {Pi} ,  it is only necessary to 
verify explicitly that there does not exist a B = B  for some arbitrary (conveniently 
chosen) set of {Pi} .  That is, the action will only be diagonal in the minimal ideals (of 
the real Clifford algebra) of J, if it is Grassman odd. This is the case we shall consider. 

We define a derivation on the algebra, Q,, such that 

Q,$ = (B +L)d*,a  (27) 

Qad = ($vBvE)*. (28) 

Then QmA = 0, mod d, for either choice of signs. a is a covariantly constant, Grassman 
odd, element of the algebra. We shall further restrict J, and a by supposing them to 
lie in a minimal left ideal. The symmetry Q, then mixes a half-integer spin with an 
integer spin field. To confirm that this symmetry conforms to what is called supersym- 
metry, we shall evaluate the commutator of two successive symmetries; this will require 
the use of the following. 

Theorem 3. If PX = X P  =X, where P is a primitive idempotent of the Clifford algebra 
of an even-dimensional vector space (over the complex field or the real field with the 
signature satisfying Z laU = 0, 2 mod 8), then X = AP where A is a O-form. 
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Proof, Suppose we could find a basis for the minimal left ideal projected out by P of 
the form {P, QiUi}, i = 1, . , . , r - 1, r = 2"'*, n being the dimension of the underlying 
vector space, where UiP = Vi V i  and {P, ai} are a complete set of pairwise orthogonal 
primitive idempotents. Then X = AP + Z l l :  CiQiUi for some 0-forms {A, Ci}. 
Orthogonality of the idempotents gives PX = AP and so PX = X 3 Ci = 0 V i .  

Thus proof of the theorem rests on the existence of a basis of the form used here. 
We certainly have the set of pairwise orthogonal primitive idempotents {P, Qi}, and 
their orthogonality ensures that the elements in the set {P, QiUi} are linearly indepen- 
dent; so it only remains to show that they span the ideal. For a given i we need at 
least one element Vi = rJiP such that QiUi # 0. Since the algebra is simple we have 
an Si : Qi =Sips;' .  Thus Sip # 0 and 

(SiP)P = sip, QiSiP = Sip. 

Corollary. If n = 4 we have S Z  = and A = 4S&. 
Before we return to the commutator of the symmetries we note how an element 

of the algebra may be expanded in p-form components. We may choose a 
homogeneousorthonormal basis for the Clifford algebra, i.e. {I"'} : g(I'', p) = 77rJ ,  where 
I, J are multi-indices and g is the induced metric on p-forms 

g ( r r ,  P) = so(rr v trJ) 
= o  ifI#J 

= -1( + 1) if I does (does not) contain a zero. 

(We choose a signature with g ( e o ,  e o )  = -1 and rr = V I j P ,  771, = q".) Any element of 
the algebra, 4 say, may be written 4 = Z arrr .  Then 

Thus 4 = Z So(4 .(rr)Tr. 
To demonstrate how the commutators may be evaluated we choose the second 

(29) 

sign in (27) and (28). Then 

[a,, Qsl4 = (d +Q)(W;)-P -(a * P I  

where we have omitted the symbols for the Clifford product. In the following we use 
the normal summation convention. Small Latin indices will be raised and lowered 
with 71nb = diag(-1, +1, +1, +l). 
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Here eQb=e",eb. Now if a P = a ,  PP=P 

[a,, Qs]4 = -2eabpSo(BaebVx,@)P - 2qabzPS~(B&wV~&)P -(a - P ) .  
Use of theorem 3 now gives 

[a,, Q p ] $  = -feabPBEebVxa$ -fqabZ@BEebZVx,,$ -(a t*P) 
= -teabSo(PB&.gTr)r'ebVx,$ -tzSo(PBESTr)Tre"zVx,$ -(a - P )  
= ieabSo(BEgrg -B&rp)r'ebvx,sl/ +tzS,(BE.$Tfi - B&Tp.)rre"zVxa$ 

= ieabS,,[B&,$(Tr - rI)P]TrebVxaJ/ +fzSo[BES(rr - fr)/3]r'e"zVxa4 

where we have used S a  = S a ,  B = -B and the fact that a and P are Grassman 
odd. So only the anti-conjugate rr enter into the expansion; namely the one-forms 
and two-forms. Thus 

[a,, QB]4 = e"bSo(BEecP)e'ebVx,+b + zSo(B61e ,~)eCeazVx,~  

- ie abSo(BEec&)e'debV,,+b - ~zSo(BEe,&)e'deaz V X a 4  

= So(BEe,P )(e abeCeb + ze 'e "2 ) v X , ~  - fSo(B&e,&) 

"z )vX,c/l 

To complete the calculation we observe 

x ( e  abecdeb + ze 
a b cd = S0(Bae,P )(e "e beCeb - 2e ' e  " ) v X a $  - f S o ( B ~ e c ~  )(e  e e eb)Vx,$. 

e bSJeb = (4  - 2p ) ~ S J  

[a,, QB 14 = - 4 S o W e  "P )VX$. 

(30) 
and obtain 

(31) 
A similar calculation shows that we obtain the same result for a different choice of 
signs in (27)  and (28) .  If 

K = -4So(B~e" /3)X,  (32)  
then K is covariantly constant. This ensures that K is a translational Killing vector. 
For any Killing vector we have 

(33) Lf& =V& + a ( d k v 4  -4" d k )  

&XI = g ( K  X) V X  E TM. (34)  

where L ~ K  denotes the Lie derivative. The metric dual, k, is defined by 

Any covariantly constant vector has a closed metric dual ( d k  = 0) and thus (33) 
enables (31)  to be written 

[a,, Q e  14 = Lfd. (35) 

[a,, Qal4* = { ( B + ~ ) 4 + ( a B p - P B & ) } * .  (36)  
Now aBp= -@E =pB& so only the anti-conjugate part of a B p  enters into the 
commutator; that is, the one-form and two-form components. Thus 

(37)  

We may evaluate the commutator of the symmetry on 4 as 

- 

[ Q a ,  Q p I 4 *  = {d +I)4+2Si(aB@)I+ + { ( A  +4)4+2S~(aBp)}* .  
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Since 7 (d +.83 = -(d +#)T and ~ S Z  = SZ the second term vanishes. Using the covariant 
constancy of a,  B, p we write (37) as 

[Qa, Q p M +  = (d-A[24,sl(aBP)l+~24*Sl(aBP)]+Q~t2Sl(aBp). 

Recalling the relations used to write (3) as (14), and (9) as (13) 

Reference to equations (22) and (23) shows that, for either choice of signs, the second 
(non-vanishing) term is a gauge transformation. 

We have demonstrated how, with the appropriate restriction on the parameters, 
the Q, generate a supersymmetry, where the commutator closes on a translation 
off-shell. For the first choice of signs in our symmetry we mix a spinor with the 
four-form and two-form components of 4, both of which are propagating. We thus 
recover a model presented by Siegel (1979) with the scalar replaced by a pseudo-scalar. 
(Had we chosen the operator d-gl we would have obtained a scalar.) The second 
choice of sign mixes a spinor with the one-form and three-form components of 4. 
The three-form component of 4 is non-propagating and we observe a version of a 
supersymmetric Maxwell-Majorana neutrino model where the auxilary field is encoded 
into an 'anti-symmetric tensor gauge field'. 

It is satisfying to see how the 'bosonic' Kahler field contains the necessary degrees 
of freedom for off -shell closure of supersymmetry in this model; and instructive to 
be able to calculate free from a reliance on matrix representations of the algebra. 
However, in this formalism the supersymmetry appears rather superficial. We are 
able to give the Kahler equation a spinorial interpretation by relying on the covariantly 
constant minimal rank projectors which exist in Minkowski space. However, it would 
appear that in  an arbitrary space we do not have such projectors (although in our 
minds the important question of the existence of covariantly constant projectors in 
arbitrary space-times requires a definite answer). If this is the case, and we wish to 
take Kahler's equation seriously, then rather than a symmetry which mixes half-integer 
and integer spin fields in an arbitrary space we are led to a more profound fusion 
between such fields. 
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